The human genome contains many loci with high incidence of structural mutations, including insertions and deletions of chromosomal segments. This excessive mutability has accelerated evolution and contributed to human disease but has yet to be explained.
Segments of DNA repeated in low-copy numbers (LCRs) have been previously implicated in promoting structural mutability in specific disease-associated loci. Lack of methylation (hypo-methylation) of genomic DNA has been previously associated with high structural mutability in gibbons and in human cancer cells, but the association with structural mutability in the human germline has not been explored.
A recent study carried out by Scientists from
Segments of DNA repeated in low-copy numbers (LCRs) have been previously implicated in promoting structural mutability in specific disease-associated loci. Lack of methylation (hypo-methylation) of genomic DNA has been previously associated with high structural mutability in gibbons and in human cancer cells, but the association with structural mutability in the human germline has not been explored.
A recent study carried out by Scientists from